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A model Liouville equation is proposed for a system composed of an ion moving 
in a solvent fluid. Using this model, explicit results are obtained for the Ohmic con- 
ductivity L and the Hall conductivity h. These results are then used to calculate the 
Hall coefficient R = ehL -2, which is a measure of the effect of non-Brownian motion, 
for several charge carriers of interest. Our results are in agreement with earlier findings 
based on a stochastic model which predict R > 1 for H+(aq). Our results also indicate 
that R ~ 1 for charge carriers such as Na +, C1-, and K + which have a mass greater 
than that of a solvent molecule (here taken as 18 amu). 

KEY WORDS: Ion, solvent fluid; applied electrical and magnetic fields; transport 
coefficients; non-Brownian effects. 

1. I N T R O D U C T I O N  

I t  is often possible  to calculate nonequi l ib r ium proper t ies  o f  l iquid systems by  
consider ing the mot ions  o f  the const i tuent  molecules as Brownian,  i.e., governed by  
Langevin ' s  equat ion  (see, e.g., Rice and Graym) .  This simplified dynamica l  descr ip t ion  
gives quite acceptable  results for  f i rs t -order  dc t r anspor t  coefficients; (~> however,  
the s i tuat ion with respect  to h igher-order  t r anspor t  coefficients is no t  a t  all clear. 
One h igher-order  t r anspor t  coefficient which is o f  par t icu la r  interest  in the theory  o f  
electrolyte solut ions is the Hal l  conductivi ty.  In  a recent  paper ,  Im F r i e d m a n  and  
Ben-Nain  have ob ta ined  an expression for  the Hal l  conduct iv i ty  by  consider ing a 
s tochast ic  model  in which the charge carr ier  (ion) is a " two-s ta te  b r o w n o n , "  this 
being a par t ic le  whose mot ion  is governed by  Langevin ' s  equat ion,  bu t  whose fr ict ion 
coefficient and  mass  r andomly  change between two sets o f  values. The  value of  the 
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Hall conductivity found using this model can differ appreciably from the pure 
Brownian-motion value. An index of the effect of non-Brownian motion on the 
Hall conductivity is the Hall coefficient, R = ehL -2 (e the electronic charge, L the 
Ohmic conductivity, and h the Hall conductivity). This quantity is identically unity 
when the charge carrier motion is Brownian, and for the two-state Brownian motion, 
R > 1 is found in some cases. Although R is experimentally accessible, there are no 
data at present since the necessary experiments are quite difficult. (4) 

The purpose of this communication is to verify the conclusions of Friedman 
and Ben-Nain within the context of a dynamical rather than a stochastic model. 
An exact dynamical description of this problem within the framework of the Liouville 
equation is of course impossible due to the complexity of the many-body problem 
which must be considered. (5) We therefore consider as our starting point a model 
Liouville equation, from which we can obtain explicit results, in terms of two model 
parameters, for L and h, and thus R. The model which we will use (which is described 
in Section 2) is similar to other models which have been successfully used in the theory 
of liquids. (6-8) In addition to supporting the findings of Friedman and Ben-Nain 
that non-Brownian effects can be appreciable in certain electrolyte systems, our 
results also allow us to substantiate one of the important assumptions in their theory, 
which Friedman has independently pointed out required further investigation, (9) 
namely that heavy ions such as Na+(aq) or Cl-(aq), which are not strictly Brownian 
particles, can be considered as Brownian. These results are derived and discussed 
in Sections 3 and 4. 

2. H O D E L  L I O U V I L L E  E Q U A T I O N  

The system which we will consider is an electrolyte solution at infinite dilution 
in the presence of externally applied electric and magnetic fields. The system is aged 
from time t = -- oo until t = 0, and then the fields, considered as weak, are turned on. 
The full statistical mechanical description is then given by Liouville's equation, (5) 

OpN/~t -~- HNOpN ~ O, 

~pN/~t @ (HN 0 -~- H') PN = O, 

- - o e < t ~ < 0  
(1) 

t > 0  

Here, PN = PN( -P, t) is the probability distribution function at time t which describes 
the entire system of N -  1 solvent particles and single charge carrier, /" specifies 
the phase of the system, HN ~ is the Hamilton operator for the unperturbed motion 
of the system, and H'  is the Hamilton operator for the perturbing external fields. 
Formal expressions for the transport coefficients we are interested in can be found 
by solving (1); (5) however, these results are not very useful since they depend on the 
solution of the N-body problem. This of course is a familar problem in the non- 
equilibrium theory of liquids, and a myriad of approximating techniques have been 
devised for its circumvention. Many of these are covered in a recent review article 
by Berne and Harp. (1~ 

The method we propose to follow here is to replace (1) by a model which, although 
it retains the physical content of the full Liouville equation, is tractable with respect 
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to the concomitant dynamical problem. The model we consider treats the charge 
carrier as interacting with a single solvent particle which in turn interacts with the 
rest of the solvent fluid. The carrier-solvent interparticle potential is assumed to be 
harmonic, and the solvent particle-solvent interaction is described by a simple 
relaxational form. The statistical description (1) is then replaced by 

8p/St  -[- H~~ = (pO _ p)/r ,  - -oo  < t <~ 0 
(2) 

ep/~t  -k (H2 ~ -4:- H ' )  p = (pO _ p)/r ,  t > 0 

with p = p(q, p, Q, P, t ) =  p(y, t) the probability distribution function at time t 
which describes the charge carrier and interacting solvent particle. The r.h.s, of  (2) 
takes into account the effect of the rest of the solvent fluid, which in effect acts as a 
reservoir. When no external fields are present, the effect of the reservoir is to bring p 
to the canonical form p0, which it does with a characteristic time -r, the solvent 
relaxation time. The phase of the charge carrier is denoted by (q, p) and that of the  
interacting solvent particle by (Q, P). The Hamilton operators which appear in (2) are 

//2 ~ = (p/m)" (0/~q) + (P/M) �9 (~/eQ) 

- @U/~q) �9 (~/ep) - (~U/~Q)" @/oe) ~ H ~ (3) 

H '  = e E .  (a/ap) + (elm) p ^ H .  (Slap) 

with U = �89 - q)2. It should be noted that the above model has at least two 
adjustable parameters, ~ ~- and co o . The solvent particle mass M could also be treated 
as an adjustable parameter if we wished to consider the charge carrier as interacting 
with a neighboring mass of solvent fluid rather than a single molecule, and although 
this is probably preferable, we will be sufficiently pressed to determine only two 
parameters, so that we will not adopt this embellishment at present, w e  believe that 
the model given by (2) and (3) gives a reasonable description of the physical problem 
being considered, and is certainly justified for carrying out exploratory calculations 
of  the type we have in mind. In further justification of its use, we mention that our 
model is identical to the itinerant-oscillator model of simple liquids proposed by 
Damle et al. ~7) when the time-dependent friction coefficient which appears in their 
model is choosen in a particular way. These authors also use a harmonic potential. 
Further, Gray (61 has used a model quite similar to (2) (with a Lennard-Jones potential) 
to also study simple liquids. In both cases, the models used were capable of producing 
results in substantial agreement with available data for liquid argon (see, e.g., Berne 
et al. Im and Gray(6)). Finally, it should be mentioned that our model can be considered 
as a simplified version of a model introduced by Lebowitz and Rubin. (s} In their 
model, the po term on the r.h.s, of  (2) becomes replaced by f(q, p, t)p0(q, p/Q, p), 
where f is the charge carrier distribution function, and p0 the equilibrium value of 
the conditional distribution function. 

Most models of liquid systems (see below) contain parameters to be determined. By way of com- 
parison, the stochastic model of Friedman and Ben-Nain contains six such parameters. 

822/2/4-6 
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As we have mentioned above, the reason for introducing (2) is that it obviates 
the problem of having to solve the N-body problem. Instead of having to treat the 
N-body streaming operators exp(tHu~ we have only the much simpler operators 
exp(tH2 ~ to consider. Explicit results can be obtained for these latter operators, 
e.g., in our calculation of the Ohmic and Hall conductivities the quantity exp(tH2~ p 
appears, and as may be directly verified 

[exp(tH2~ p = p + m*{[(P -- (p/m)](1 -- cos oJt) + co(Q - q) sin oJt} (4) 

where we have set M = 1 for convenience, and m*, the reduced mass, and co are 
defined as 

m* = m/(1 -1- rn) 

~o = ~o0[1 + (1/m)ll/~ 

3. O H M I C  A N D  H A L L  C O N D U C T I V I T I E S  

The response of an aged system to an external, weak perturbation which is turned 
on at t = 0 is easily calculated (at least formally) by using the so-called direct Kubo 
method. The full current which flows at t > 0 in response to the external fields is 

j(t) = (e/m) f d 7 p(~, t) p (5) 

Substituting for P(7, t) in (5) by noting that a formal solution to (2) for t > 0 is 

P(7, t) ---- [exp(--tH~ 0(7, 0) 

- -  J o dq{exp[--(t  -- tl)(H o + It' + l/~')]} H'P(7, O) (6) 

we find, after some simple manipulation, that the steady-state current j~ is 

L -: Jim i(/) =/~(e2/m 2) E.  ~(0) (7) 

where fi = 1/kT, and _~(S) is the Laplace transform of the model momentum auto- 
correlation function, 

d?(t) = f d 7 p~ ) p{exp[t(H ~ + H '  -- l/T)]} p (8) 

Equations (7) and (8) can be expanded in powers of I E [ and f H [, and the coefficient 
of I E ] x I H I ~ in (7) will be a transport coefficient of order x -t- y which is given by 
a term of order x + y -- 1 in the expansion of 5" If  we call _0P(~) that part of ~ which 

is of order n in H', then the usual Kubo formula for the linear response, i.e., the 
Ohmic current Jo, can be written as Jo = LE, where the Ohmic conductivity L is 

L = (e2/m)/3~(~ (9) 
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Expanding the exponential operator in (8)to obtain qb C~ which, with (5), can be 
explicity calculated, we then find 

L = (eZ/m) ~-(1 -- (m*/m) %- (m*/m){1/[1 + (o)'r)2]}) (10) 

Continuing, we turn now to the second-order response to H', which is the 
Hall current j~ .  This quantity is not generally a simple functional of =~<0~, but instead 
has the following more complicated form~5~: 

JH = [3(e2/m2) E " qblX)(0) 

---- fl(e2/m 2) E " f 2  dt f'o dfi f d, f(~,) 

• p{exp[( t -  q)(H ~  1/~r)]} H'{exp[q(H ~  l/r)]} p (11) 

In the corresponding expression for JH based on the solution of (1), the Hamilton 
operators H~v ~ appear in place of (H ~  l/r), and explicit calculations cannot be 
carried out. In the present case, however, this expression can be evaluated, and 
we find JH ---- hE A H, where the Hall conductivity h is given as 

h=-m-~-~ 2 e 3  [1 - -2 -m* (~or) ~ + ( ~ ) 2 ( 1  3 1 + 1 1--(o)r)~ )] 
m 1%- (cot) 2 2 1%- (mr) = 2 [1 -Tk (cor)=l 2 

(12) 
Equations (10) and (12) are the results which we will utilize to calculate the Hall 
coefficient. As these results now stand, however, they are quite useless unless some 
method can be devised for obtaining meaningful values of co and r for systems of 
interest. If  molecular dynamics results were available, e.g., momentum autocorrelation 
function data, for a foreign particle moving in a host solvent fluid, then standard 
methods could be applied to evaluate co and r. m) We expect such data will become 
available soon; (a~) however, for the present, we will have to be content with the more 
ad hoe methods described in the following section. 

4. C A L C U L A T I O N  OF THE HALL COEFFICIENT 

In this section, we restrict ourselves to systems in which the host solvent fluid 
is water (in part 4.1, the restriction is only that the solvent molecules have a mass 
of 18 amu). We will distinguish between two cases, (1)charge carrier mass > 18 amu, 
and (2) charge carrier mass < 18 ainu. 

4.1. Heavy Charge Carriers (Mira < 1) 

It can be shown that the Brownian-motion description is embedded in the exact 
statistical mechanical description in a particular limit in which M/m --~ 0. ~) Friedman 
and Ben-Nain, on the other hand, have considered the motion of Cl-(aq) as being 
strictly Brownian; subsequently, Friedman ~~ has indicated that this particular 
assumption in the FB-N theory calls for further examination. In order to utilize the 
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results of the last section to estimate the non-Brownian effects of heavy, but not 
strictly Brownian charge carriers, we must first determine a procedure for assigning 
values to co and ~. Limiting Ohmic conductivity data for ions in water are readily 
available; ~1~ however, no other reliable independent data are presently in the 
literature. Thus, we will have to resort to some ad hoc procedure in choosing one of 
our parameters. Fortunately, the solvent fluid relaxation time r can be estimated 
with a reasonable amount of accuracy, and so the procedure we will adopt is to make 
an educated guess of its value, and then use the conductivity data with (10) to 
evaluate co. 

In the limit m*/m--~ 0 (strict Brownian motion) r--* ~'B, where ~'B is the 
Brownian-motion relaxation time. This latter quantity is related to L through the 
Einstein relationship L = -:B(e2/m), which defines r B for arbitrary m*/rn, so that 
from (10) we have, for arbitrary m*/m 

0 <~ (co,:)~ = [(mtrn*)(,cB/~) 4- 1 -- (m/m*)] -1 --  1 (13) 

from which it follows that 

1 - -  ( m * l m )  <~ "B/" 1 (14) 

This result is suggested by the detailed and rigorous study of Resebois et aL, aS) 
who have shown for a weakly coupled system that the actual fluid relaxation time 
is of the same order and greater than the relaxation time associated with a Markovian 
description of the system. For heavy ion carriers, 0 ~< rn*/m <~ �89 and (14) gives us 
a reasonable bound on the value of ~-. In order to ensure that ~- is choosen in a 
consistent manner as m*/m varies, it seems reasonable in the absence of any other 
information to use the mean values given by (14). A particular advantage of this 
method of choosing r is that it obviates the need for Ohmic conductivity data in 
computing R, since -c is given directly in terms of rB, and thus the results which are 
obtained are for arbitrary solvent conditions. We have carried out calculations for 
the Hall coefficient R ----- ehL -~ for Na +, CI-, and K +, and the results are R = 1.00, 
0.95, 0.95, respectively. (See Table I for the corresponding values of co~-, ~/~'B, and a 
representative value of ~'B .) The first is an example of a decidedly non-Brownian 
particle, the second and third are considerably more Brownian. For heavier charge 
carriers, one finds R ~ 1. Thus, our results indicate, in accord with the assumption 

Table I. S u m m a r y  of Results ~ 
i l l  

/on R ~/~-B (OJT) ~ ~'B, sec 

Na + 1.00 1.28 1.00 1.26 • 10 -14 
C1- 0.95 1.20 1.00 2.85 • 10 -14 
K + 0.95 1.19 1.00 3.08 • 10 -14 
H + 7.28 10-13/rB 25.6 3.75 x 10 -15 
H + 22.4 5 • 10-z3/rB 133 3.75 • 10 -15 

a rB calculated in HzO at 25~ t14~ 
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of  F r i e d m a n  and Ben-Nain,  tha t  non-Brownian  effects are  no t  significant for  heavy 
charge carriers. 

4.2. Light Charge Carriers (H  +) 

We now turn  our  a t tent ion  to the mos t  i m p o r t a n t  o f  the l ight charge carriers,  H +. 
Here,  it  no longer  seems just if iable to consider  ~- in terms o f  its devia t ion  f rom the 
Brownian  re laxat ion  time, the s i tuat ion being marked ly  non-Brownian  in this case. 
A reasonable  guess can be made,  however,  as to  a lower  b o u n d  for  T. This would  be 
the t ime required for  a solvent  molecule  to move an apprec iab le  distance, 3 which is 
o f  the order  of  10 -1 psec (10 -13 sec). Using this value for  % and  the exper imenta l  da t a  
for  L, aa~ we find for  H+(aq) at  25 ~ tha t  R = 7.28. Fur ther ,  for  ~- chosen as 
5 • 10 -1 psec, and  under  the same condit ions,  R = 22.4, and  for  ~- increasing,  
R also increases (see Table  I). Thus,  despi te  the uncer ta in ty  in de termining  r ,  our  
results still s t rongly indicate  tha t  non-Brownian  effects are significant, and  can thus be 
considered as independen t  evidence in suppor t  o f  the conclusions o f  F r i e d m a n  and  
Ben-Nain.  
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